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composes into titanium metal and titanium tetrabromide, very slowly at 
500° but rapidly at 650°. 

Both the di- and tribromide react with hydrogen bromide to produce the 
tetrabromide. Titanium metal reacts with hydrogen bromide to produce 
a greater proportion of non-volatile bromides (TiBr2 and TiBr8) to the 
tetrabromide at 300° than at 450°. 

At 300° titanium metal suspended in titanium tetrabromide brings about 
partial reduction to the tribromide. Silver and mercury reduce titanium 
tetrabromide, dissolved in benzene, to titanium tribromide; in the case 
of the latter metal the reduction is practically quantitative. 
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Although the mass action law has often been applied to experimental 
studies of gaseous equilibrium, there is little or no direct evidence of its 
inadequacy for gases. This is doubtless due to the fact that most studies 
have been made at low pressures, and sometimes also at high temperatures, 
conditions which favor the applicability of the ideal gas laws to real gases. 

A recent exception has been furnished by the data on the Haber equi­
librium obtained by Larson and Dodge and by Larson.1 Here it has been 
found that KP, the mass action function in terms of ideal gas partial pres­
sures, is not constant at constant temperature, as required by the theory of 
ideal gases, but increases definitely with the pressure. As already pointed 
out2 we must therefore believe that Kp will vary if the concentrations are 
varied at constant temperature and pressure—in other words, that KP is 
not strictly constant with respect to any change of condition whatever. 

The contributions of previous investigators to the theory have been 
discussed at length in Part I of the present series3 of three papers. Here 
we shall repeat only the previous results of present interest. 

1 Larson and Dodge, T H I S JOURNAL, 45,2918 (1923); Larson, ibid., 46, 367 (1924). 
! Gillespie, ibid., 47, 305 (1925). 
8 Gillespie and Beattie, Pkys. Rev., 36, 743 (1930); Part I I , Phys. Rev., 36, 1008 

(1930). In this part the heat of reaction was calculated a t various temperatures and 
pressures, and the entropy and energy constants of ammonia were found. 
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In brief,, a general mass action equation has been derived4 by assuming 
that certain properties4,6 of ideal gases hold also for real gases at very low 
pressures. By assuming further that the equation of state of a gas mixture 
may be obtained by means of a "linear combination of constants" and that 
the Beattie-Bridgeman equation of state6 is to be used for the separate 
gases a mass action equation has been derived7 in which all the integrations 
have been carried out, in terms of the volume of the mixture. 

Subject to the same assumptions and to some simplifying assumptions, 
which should be valid at pressures not too high, the following approximate 
mass action equation has been derived8 

lnKp = InX* - {2xi[Boi - AJRT - Q/Ts] +Xy^(A1J' - Sx-A^Y/RT] }p/RT (1) 

Kp is the limiting value of Kp when the gaseous mixture is maintained in 
equilibrium and its pressure reduced to zero. It is determined by the 
temperature alone for a given chemical equation. 

An approximate equation similar to Equation 1, but without the con­
stant c, has been obtained by Keyes9i from the kinetic considerations 
leading to the Keyes equation of state.915 

The chemical equation for the Haber equilibrium is 
1/2N2 -I- 3/2H2 = NH8 (2) 

From the definition of K t we have 
log Kp = log x — 1/2 log XN — 3/2 log xn — log p (3) 

where x, .rN and xH are the mole fractions of ammonia, nitrogen and 
hydrogen, respectively, in the equilibrium mixture, and p is its pressure. 

Equation 1 gives us for the Haber equilibrium, after substituting nu­
merical values3 for the equation of state constants A&, Boi and Q 
log (Kp/K*) = ^[0.1191849/r + 25122730/r4 + 38.768162(*;4j, / 1)/r j + 

64.49429(S^0
I /2)V2n 2] (4) 

where the values of Aj{2 for ammonia, nitrogen, hydrogen and argon are 
1.546932, 1.159526, 0.4444097 and 1.136090 liter-(atmosphere)172 per mole, 
respectively, and log refers to the base 10. 

In Part I of the present series, Equation 4 was applied to the existing data 
of Haber,10 of Larson and Dodge, and of Larson, and was found to represent 
the effect of pressure on the yield of ammonia within the experimental 
error at all temperatures. 

4 Gillespie, T H I S JOURNAL, 48, 28 (1926). 
• Beattie, Phys. Rev., 36, 132 (1930). 
6 Beattie and Bridgeman, Proc. Am. Acad. Arts Set., 63,229 (1928); T H I S JOURNAL, 

SO, 3133 (1928). 
» Beattie, Phys. Rev., 31, 680 (1928); ibid., 32, 691 (1928). 
8 Gillespie, ibid., 34, 1605 (1929). 
9 (a) Keyes, T H I S JOURNAL, 49, 1393 (1927); (b) Am. Soc. Refrig. Eng. J., 1, 9 

(1914); Proc. Nat. Acad. Sd., 3, 323 (1917). 
10 Haber, Z. Elektrochem., 21, 89 (1915). 
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The temperature variation was expressed by the equation 
log K* = -2.691122 log T - 5.519265-10"T + 1.848863-10"T2 + 

2001.6/r + 2.6899 (5) 
of which the last two constants, and these only, were arbitrary and chosen 
to fit the whole body of data. 

Theory 

Equation 5 rests on the assumptions that the specific heats of the gases at 
extremely low pressures may be expressed over the necessary temperature 
interval as functions of the temperature in series, and that the temperature 
variation of Kt is the same for real gases at extremely low pressures as for 
ideal gases.11 There would be no point here in questioning the validity of 
these assumptions. The use to which we put Equations 4 and 5 in this 
paper depends, however, on the validity of Equation 1 or 4. 

We believe that we are in a very good position to calculate the effects of 
varying composition in the Haber equilibrium by the use of the numerical 
equation 4 in connection with Equation 5, which serves to eliminate log K% 
from Equation 4, for the following reasons: (1) the general assumptions 
underlying the mass action equations discussed above are supported 
abundantly by experimental evidence other than that relating to the Haber 
equilibrium, as has been discussed in Part I. (2) The agreement of the 
approximate equation (1) or (4) with the Haber equilibrium data indicates 
that the simplifying assumptions which have been used to obtain them are 
not too severe. (3) The composition terms in ~L{XiA1^) occurring in 
Equation 1 or 4 must be supposed approximately correct, since a mass 
action equation, which may be considered to be based on the Lewis and 
Randall rule12 of fugacities, and which differs from Equation 1 principally 
by the omission of these composition terms, has been applied to the Haber 
equilibrium data and found to fail badly at 300 atmospheres to represent 
the pressure variation of KP, though the representation at lower pressures 
was good.4 

A mass action question of unique interest is the following: At what mole 
ratio, hydrogen: nitrogen, will there be at given temperature and pressure 
the largest mole fraction of ammonia in the equilibrium mixture? 

When the function KP is constant at constant temperature and pressure, 
as is the case not only for ideal gases but also for the case that the Lewis and 
Randall rule is exact,4 the optimum ratio is exactly three (provided neither 
reactant is contaminated with an inert gas), as may readily be shown 
mathematically by equating to zero the derivative of log Kp with respect 
to the ratio H2: N2. But according to Equation 1 or 4, or indeed according 

11 For a very simple choice of necessary assumptions for the discussion of thermo­
dynamic equilibrium in real gases, see Beattie, Ref. 5. 

12 Lewis and Randall, "Thermodynamics and the Free Energy oi Chemical Sub 
stances," McGraw-Hill Book Co., New York, 1923. 
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to any equations which are not based on the ideal gas laws and which differ 
from the Lewis and Randall rule,4 Kt varies with composition at constant 
temperature and pressure, and naturally a value different from three will be 
expected for the optimum ratio, as already suggested.13 

By examination of the derivative of the mole fraction of ammonia at 
equilibrium, below always denoted by x, with respect to re, the equilibrium 
value of the ratio H2:N2. the following equation is found for the optimum 
value of re when no argon is present in the reactant gases. 

r, = 3 - J (A^ - A$) — ^ (1 - *) [38.768 + ISSMZ(M1/*)] £ (6) 

Here A0^ and A^ are the cohesive pressure A0 constants in the Beattie-
Bridgeman equation of state for nitrogen and hydrogen, respectively. 
The summation S(xi^4j{2) is obtained by adding the terms XiAl{2 +X2^J2

2 

+ . . . . , etc., taking the square roots of the cohesive pressure constants, 
and sci, Xt, etc.; the mole fractions, for all gases present in the equilibrium 
mixture. M is the modulus of logarithms, 0.43429 . . . , p is the pressure 
in atmospheres (normal) and T is the absolute temperature (t° + 273.13). 

At zero pressure re = 3. At other pressures the sign of the correction 
depends on the term (A$ - A^), which is +0.7151163. Hence the 
optimum ratio lies at less than 3 for all pressures not zero within which the 
simplifying assumptions used in deriving Equation 1 are valid. 

Although re appears on both sides of Equation 6, this does not cause any 
serious difficulty, as the quantity to be subtracted from 3 is small, and hence 
the use of an approximate value of re on the right-hand side of the equation 
will lead to a good value. More serious is the fact that * and S ( ^ ^ 8 ) 
must be consistent with Equation 4. Hence several trials are necessary to 
arrive at good numerical values of x and re. We have used Equation 6 only 
for checking the results of other computations. 

It appeared somewhat more interesting to calculate the best initial value 
of the ratio H2:N2, which initial ratio we shall designate by r, in a reactant 
mixture of hydrogen and nitrogen when the nitrogen contains c mole per 
cent, of argon. 

If in such a reactant mixture containing originally no ammonia there is 
formation of ammonia subject to Equation 2, then the mole fractions of the 
various gases at any time, for instance at equilibrium, will be related to 
each other and to r and c by Equations 7 

(1 + *) x 
*NHi = * *N (1+c+r) 2 

c(l + *) v r(l + *) „ x 
*Ap ~ (1 + c + r) ** ( 1 + c + r ) 6 2 

(7) 

These relations (7) will be applied only to the mole fractions at equilibrium. 
From Equations 4, 5 and 7, log Kp, #N, xH and Xj^ may be eliminated, 

13 Gillespie, J. Math. Phys., Mass. Inst. Tech., 4, 84 (1925). 
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giving an equation between r, x, c, p and T, containing log Kp which is a 
function of the temperature. From this equation the derivative dx/dr 
at constant c, p and T may be found and put equal to zero. This gives 
finally the following equation for the value of the initial ratio r for which x 
is a maximum at given values of c, p and T. 

r - 3(1 +c)- 3CX(2(1
++J f) ~ J} [A& - AgU +c)+ AlHc] X 

^ ( t + t ) ^ *N*H [38'768 + 128-"2 {XiA ̂ J 7* (8) 

For ideal gases the A<> constants are zero, the last term of Equation 8 
vanishes, and we have 

o I o 1 — K — 0.5c* . . 

' ° 3 + 3 e l + * + l.frtt (9) 

Thus even for ideal gases the best initial ratio is not three when nitrogen 
cannot be added without adding argon; although of all equilibrium mix­
tures containing the same mole fraction of argon, the one whose ratio H2:N2 

is three contains the largest percentage of ammonia. 
For any chosen values of c, p and T, Equation 8 may be solved for values 

of r and x which are also consistent with the mass action and stoichiometric 
requirements as expressed in Equations 3, 4, 5 and 7. For this purpose an 
equation may be found of the form F = 0, by elimination of log Kt and log 
K* from Equation 4 by use of Equations 3 and 5. For any chosen value 
of r, a value of x may then be found by trial which will make the function F 
reduce to zero. Elimination of the mole fractions xN, xH and #Ar is best 
made after calculation of their numerical values from Equations 7. 

The Present Calculations 

We have made calculations for the temperature 500°, a series of pressures, 
and an original mole fraction of argon in the nitrogen, c = 0.012. This is 
about the value of c when nitrogen is made from air and the argon not 
removed. The function to be reduced to zero is not so formidable as might 
be expected from the above, once T, p and c have been assigned numerical 
values, and the numbers have been collected and combined. Thus at 1000 
atmospheres the equation we had to solve was 
F = 0.7985342 + 0.06485898S(^1,/2) + 0.10789870[2(^J/2)]2 + 

1 3 
g l°g *K + 2 loS *H - log * = 0 (10) 

subject to the relations (7). 
At each pressure the optimum value of r was calculated by Equation 8, 

using approximate values of the mole fractions, and then an equation such 
as (10) was solved for x at values of r adjacent to this approximate optimum 
value. Finally Equation 8 was used to confirm or to locate more precisely 
the optimum value. The final ratio re was also computed from the 
equation 
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re = 3(1 + c) - JL [A% - Ag(I +C) + Alilc] ( / 1 + ' J ^ «WH X 

[38.768 + 128.99Sfe4V2) ]± (H) 

The optimum values of r, the initial ratio H2:N2, and of re, the ratio at 
equilibrium, are given in Table I. In Table II are given the percentages of 
ammonia in the equilibrium mixtures at the optimum value of r and also 
for r = 3. In Table III are given the optimum ratios, and in Table IV the 
percentages, for the case that no argon is present. 

We have thought it of interest to calculate also the percentages at the 
initial ratios 2 and 4, and also to compare them with the yields that would 
be expected from the ordinary simple mass action law at the initial ratios 
2 and 4 from the percentages for r = 3 as given by our improved mass 
action law. Argon was assumed to be absent. 

The yields expected from the ordinary mass action law were obtained by 
solution of the equation 

F' = log p + log Kp + 1/2 log *N + 3/2 log Xn - log * = O (12) 

subject of course to the relations (7), when log Kt is the correct value of 
log Kp found from Equations 4, 5 and 7 for c = O for the given temperature 
and pressure. 

TABLE I 

OPTIMUM RATIOS, INITIAL r AND FINAL re OF H2 : N2, W H E N ARGON ACCOMPANIES THE 

NITROGEN (C = 0.012) AT VARIOUS PRESSURES AND AT 500° 

£(a tm. ) 0 100 300 600 1000 
r o p t 3.036 2.99 2.94 2.91 2.92 
r„ opt 3.036 2.99 2.90 2.79 2.72 

TABLE I I 

M O L E PERCENTAGES OF AMMONIA IN EQUILIBRIUM M I X T U R E S AT VARIOUS PRESSURES 

AND AT 5 0 0 ° AT OPTIMUM RATIO H 2 : N 2 AND AT THE RATIO 3 , W H E N ARGON ACCOMPANIES 

THE NITROGEN 

p(a.tm.) 0 100 300 600 1000 
r o p t 0 10.453 25.653 42.083 58.195 
r = 3 0 10.453 25.649 42.066 58.163 

TABLE I I I 

OPTIMUM RATIOS, INITIAL r and FINAL re AT VARIOUS PRESSURES AND AT 500° W H E N 

ARGON I S ABSENT 

p (atm.) 0 100 300 600 1000 
r o p t 3 2.96 2.92 2.90 2.91 
r e o p t 3 2.95 2.87 2.76 2.68 

TABLE IV 

M O L E PERCENTAGES OF AMMONIA IN EQUILIBRIUM M I X T U R E S AT VARIOUS PRESSURES 

AND AT 500° AT OPTIMUM RATIO H2 : N2 AND AT THE RATIO 3, W H E N ARGON I S ABSENT 

p (atm.) 0 100 300 600 1000 
r o p t 0 10.516 25.809 42.343 58.562 
r = 3 0 10.516 25.802 42.320 58.523 
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4.305 
5.000 
6.527 
10.822 

1.840 
1.581 
1.260 
0.903 

4.305 
5.008 
6.594 
11.414 

Table V gives a tabulation of the results of these computations as well as 
the final ratios re. 

TABLE V 
THE YIELD OF AMMONIA AT VARIOUS PRESSURES AND AT 500 ° AND AT INITIAL RATIOS 
H2: N2 OF 2, 3 AND 4 BY THE IMPROVED MASS ACTION EQUATION, AND THE YIELD AT 
RATIOS OF 2 AND 4, AS CALCULATED FROM THE YIELD AT 3 BY THE ORDINARY MASS 

ACTION LAW 
Improved equation Ordinary mass law 

r 2 3 4 2 4 
p Calculated mole per cent, of ammonia in the equilibrium mixture 

100 10.137 10.516 10.304 10.111 10.321 
300 24.690 25.802 24.994 24.529 25.122 
600 39.962 42.320 40.174 39.585 40.591 

1000 54.020 58.523 53.578 53.551 54.430 

Values of re the final ratios H2: Nj 
100 1.840 3 
300 1.577 3 
600 1.251 3 
1000 0.890 3 

Discussion of the Results 

Whether argon is present in the usual quantities or absent, the optimum 
initial value of the ratio Hs:N2 passes through a minimum at about 600 
atmospheres, at which it is only about 3 % less than the value 3; but both 
the minimum and the smallness of the effect are due to the considerable 
change in the value of the ratio as a consequence of the extensive formation 
of ammonia at the higher pressures. The optimum value of the ratio at 
equilibrium passes through no minimum and reaches a value over 10% less 
than 3 at 1000 atmospheres. 

Although reasons were given above for supposing that the approximate 
equation used for the calculation should give good results, it would not 
necessarily follow that pressure derivatives of functions such as the opti­
mum ratio would be furnished correctly, as the terms neglected in deriving 
the approximate equation would affect the pressure derivatives. Never­
theless in calculations of the Joule-Thomson effect,14 similar approxima­
tions were made and yet a correct slope was obtained of the curve for the 
inversion temperature vs. pressure. 

Whether argon is present or not, the maximum mole percentage of 
ammonia formed at the optimum ratio exceeds the mole percentage formed 
at r = 3 by less than 0.07% of this mole percentage even at 1000 atmos­
pheres. Hence the optimum ratio may safely be taken as 3 for practical, 
purposes, though in point of theory it must be regarded as less. 

This practical coincidence of the improved mass action law with the 
ordinary mass action law is, of course, due to the fact that the value of any 

" Beattie, Phys. Rev., 35, 643 (1930). 
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function cannot change rapidly in the neighborhood of its maximum. 
From Table V it can be seen that if the ordinary mass action law be used to 
calculate the mole percentage of ammonia when r = 2 or 4, from the value 
given for r = 3, it will be found to produce errors which are 0.87 and 1.59% 
of the correct percentages, respectively, at 1000 atmospheres. Though the 
pressure here is high, the variation of composition is rather small. 

Comparison of Tables II and IV shows that the yield at any pressure is 
better in the absence of argon. At 1000 atmospheres the improvement is 
about 0.63% of the yield. 

Theoretically, the optimum mixture from nitrogen which contains argon 
may be improved by adding pure nitrogen. The best initial ratio depends 
but very slightly on the argon content, being the same for mixtures contain­
ing a constant initial mole fraction of argon equal to 0.003 as the figures 
listed in Table III for zero mole fraction of argon; but the effect on the 
yield of adding pure nitrogen in this way is small. 

Summary 

By means of an improved mass action equation, which had previously 
been found to represent the combined effects of variations of temperature 
and pressure together with such concomitant variations of composition 
as necessarily occurred in the displacement of equilibrium, calculations have 
been made of the effects on the yield of ammonia produced by systematic 
variation of the ratio of hydrogen to nitrogen. For the temperature 500° 
and for the pressures 100, 300, 600 and 1000 atmospheres, the optimum 
values of this ratio, both the initial values and the values at equilibrium, 
were found for pure hydrogen and nitrogen, as well as for pure hydrogen and 
atmospheric nitrogen from which the argon has not been removed. 

Except at low pressures, the optimum value of the ratio is less than 3. 
The optimum value of the initial ratio falls to 2.90 at 600 atmospheres, 
and that of the final ratio at equilibrium to 2.68 at 1000 atmospheres, when 
no argon is present. The corresponding figures are 2.91 and 2.72 when 
atmospheric nitrogen is used. 

The percentage of ammonia at the optimum ratio exceeds that at the 
ratio 3 by less than 0.1% of the percentage at 3 in any case. 

The presence of argon is deleterious at any pressure. At 1000 atmos­
pheres the yield when pure nitrogen is used is about 0.6% (of its value) 
greater than when atmospheric nitrogen is used. 

For the case of pure nitrogen, the yields of ammonia were also calculated 
at the values 2, 3 and 4 at each pressure and at 500°. For comparison, 
the ordinary mass action law was used to calculate the yield of ammonia at 
each pressure and at the initial values 2 and 4 from the yield at the value 3, 
with errors which reached at 1000 atmospheres 1.5% of the yield at 3. 
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